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SUMMARY

This paper is concerned with the analysis of the Helmholtz–Hodge decomposition theorem since it plays
a fundamental role in the projection methods that are adopted in the numerical solution of the Navier–
Stokes equations for incompressible �ows. The paper highlights the role of the orthogonal decomposition
of a vector �eld in a bounded domain when general boundary conditions are in e�ect. In fact, even
if Fractional Time-Step Methods are standard procedures for de-coupling the pressure gradient and
the velocity �eld, many problems are encountered in performing the decoupling with higher accuracy.
Since the problem of determining a unique and orthogonal decomposition requires only one boundary
condition to be well posed, thus either the normal or the tangential ones, result exactly imposed at the
end of the projection. Numerical errors are introduced in terms of both the pressure and the velocity but
the orthogonality of decomposition guarantees that the former does not contribute to a�ect the accuracy
of the latter. Moreover, it is shown that depending on the meaning of the vector to be decomposed,
i.e. acceleration or velocity, the true orthogonal projector can be de�ned only when suitable boundary
conditions are veri�ed. Conversely, it is shown that when the decomposition results non-orthogonal, the
velocity accuracy su�ers of other errors. The issue on the resulting accuracy order of the procedure is
clearly addressed by means of several accuracy studies and a strategy for improving it is proposed. This
paper follows and integrates the issues reported in Iannelli and Denaro (Int. J. Numer. Meth. Fluids
2003; 42:399–437). Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Helmholtz decomposition theorem states that a smooth vector �eld w is uniquely deter-
mined, in a bounded regular domain, when its divergence, curl and normal (or tangential)
component on the boundary, are assigned. Consequently, it is implied from this theorem that
every smooth vector �eld decomposes as the sum of a gradient vector �eld and one, which
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is divergence-free. On a compact Riemannian manifold, this splitting becomes the classical
Hodge decomposition theorem. In particular, the theorem guarantees that given a compact
Riemannian manifold R and a di�erential form $ then there exist three di�erential forms, one
of them being a harmonic di�erential one, for which $ expresses as sum of them. The dif-
ference in Helmholtz’s decomposition expressed by two terms and the one de�ned with three
terms by Hodge results from the compactness of the manifold R. The Hodge decomposition
theorem implies that every smooth di�erential form on a compact manifold decomposes into
the sum of three parts, each one being again smooth. However, Hodge decomposition holds
in much greater generality.
The Helmholtz–Hodge decomposition theorem (also known as Ladyzhenskaja theorem

and indicated as HHD in the following) plays a basic role in the theory of generalized
solutions‡ as well as in the numerical approximation of physical models as the Navier–Stokes
equations [1–9]. One of the major di�culties that are encountered in solving the system
of di�erential equations for isothermal incompressible �ows resides in the fact that the ve-
locity vector and the pressure gradient �elds result coupled each other by the continuity
constraint, because the pressure is only a Lagrange multiplier, not a thermodynamic state
variable. As, for solving continuity and momentum equations (resulting in a Stokes-like sys-
tem), this coupling would lead to use heavy computational procedures, splitting methodologies
are often implemented. Owing to their simplicity in de-coupling the problem and solving sep-
arately the parabolic=elliptic equations, fractional methods are massively used for several cases
[10–18].
The so-called Fractional Time-Step Method (FTSM) provides the solution of the incom-

pressible Navier–Stokes equations in certain separated steps. The �rst one is simply based on
the solution of the time-discretized momentum equation with (referred as incremental-pressure
projection methods) or without (referred as pressure-free projection methods) a provisional
pressure gradient. Such equation is associated to a suitable set of numerical boundary condi-
tions for parabolic-type equations and provides a non-solenoidal intermediate velocity vector,
say v∗, which is afterwards projected onto the space of divergence-free vector functions.
Hence, the second step consists in solving the Poisson equation associated to proper closure
conditions while, in order to enforce the continuity, the last step is the correction of v∗ by
means of the computed gradient �eld. Therefore, considering the HHD as being a part of
the FTSM, one can summarize that the �rst step provides the vector function w= v∗ then
projected onto the space of divergence-free vector functions having either vanishing normal
component along the boundary (i.e. parallel to the frontier of the domain) or having the tan-
gential components assigned on the boundary. According to the HHD enunciate, the projector
is an orthogonal operator, i.e. is symmetric with respect to the inner product of two vectors,
bounded and idempotent, gradient and divergence operators result adjoints and the decomposi-
tion is unique. Although several second-order time accurate projection methods were proposed
and the guidelines of the FTSM are well understood, it appears still largely debated in the
literature [19–28] how the de-coupling a�ects the actual accuracy of the original Chorin’s
method who showed only a �rst-order convergence rate of the solution [29].

‡Hermann Weyl revealed an error in the Hodge’s proof of the existence theorem for harmonic forms, originally
published in the book in 1941. Although the 1952 edition of Hodge’s text corrects this, Kodaira is also credited
to have provided the �rst correct argument.
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Apart from the global accuracy of projection methods, which is analysed in many pa-
pers, a controversial issue consists in the proper prescription of the boundary conditions.
In fact, for example considering the case of homogeneous Dirichlet conditions, the orthog-
onal projection of v∗, associated to vanishing normal component, ensures that the resulting
divergence-free vector accomplishes the normal condition on the boundary, while the ful-
�lment of the null tangential ones is not ensured. Similarly, if the null tangential compo-
nents are assigned in the orthogonal decomposition the same remark remains valid, since
the tangential will be satis�ed whereas the normal component is not ensured to vanish. In
other words, the HHD does not guarantee that the obtained divergence-free vector simulta-
neously accomplishes all the physical values on the boundaries. This happens because the
HHD problem requires only one boundary condition to be well posed (either the normal ve-
locity component or the vector tangential one), the others resulting in a way, which depends
onto the approximations in computing v∗. Generally, in order to remedy this approximation,
for example for imposed normal component, the obtained tangential components are simply
disregarded at the end of each time step and reset to their known values on the boundary.
However, this strategy of resetting the tangential component to its correct physical value was
proved to remain still inadequate, as well as it can reduce the smoothness of the velocity
�eld [14, 23].
A further remark is that the FTSM has been largely applied in �ows condition having

non-vanishing as well as non-steady normal components, i.e. with non-homogeneous Dirich-
let conditions (e.g. simulations of backward facing-step �ows). As there are not vanishing
normal components on the frontier, the general assertion of the HHD theorem would fail.
Nevertheless, these approaches are considered, in a more general sense, as extensions of the
HHD method [14, 20], even if they do not retain the same properties of the proper orthogonal
decomposition. For example, in the recent paper of Brown et al. [14], the Hodge decompo-
sition of the momentum equation with non-homogeneous velocity boundary conditions (see
Equation (29) of that paper), is reported. Thus, the intermediate vector v∗ is projected onto
a subspace of divergence-free vector functions but, this time, having a non-vanishing normal
component on the boundary. This fact implies that the computed divergence-free velocity
�eld is no longer the unique vector component of the HHD but is only a component of
a more general decomposition along non-orthogonal (apart from some speci�c cases) sub-
spaces given by the momentum equation terms. As reported in Reference [20] ‘the question
to be addressed is whether orthogonality is really important’; in other words, in order to
adopt general boundary conditions, one asks if one can resort to a non-orthogonal decom-
position or the proper orthogonal projection is a necessary condition. In such cases, it is
important to analyse the consequences that appear because many test cases or analytical so-
lutions with such general boundaries are adopted for testing new splitting algorithms and
the results can be misleading. A consideration on this question will be addressed in the
following.
The paper is organized as follows. First, in Section 2 the mathematical outlines of the HHD

theorem are reported. This section is addressed, for the sake of completeness, to a reader not
necessarily familiar with this theorem, but can be someway overstepped by other readers.
Sections 3 and 4 are the core of the paper wherein the implications of the HHD theorem in
solving the Navier–Stokes system with the FTSM, are analysed. Speci�cally, Section 3 focuses
on the determination of the Eulerian acceleration a by means of the HHD of an acceleration
a∗ at an initial time t0 whereas Section 4 illustrates the determination in the pressure-free
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projection method [14] of the orthogonal decomposition of v∗ which is solution of a time
discretized equation, traditionally obtained by applying the Adams-Bashforth=Crank-Nicolson
(AB=CN) scheme in the prediction step.
In fact, it is shown in Section 3 that a non-solenoidal acceleration a∗ can be preliminary

computed, from the di�erential momentum equation without time discretization. Since at the
initial time the velocity vector is assumed to be given everywhere over the bounded do-
main, the vector a∗(t0) takes into account all the correct boundary conditions. In order to
determine both the acceleration vector a(t0), with prescribed vanishing normal component on
the boundary, and the pressure gradient, the HHD can be directly applied to the momentum
equation, before the time integration. Then, an initial value problem can be solved for ob-
taining the divergence-free velocity �eld at the new time. Several �ow cases are illustrated
to clarify the procedure and extend the HHD criterion to the case of non-vanishing normal
component.
Conversely, in Section 4 it is highlighted how the �eld v∗ depends on the implicit time

integration of the initial velocity v(t0) therefore, the computation already su�ers by pressure
errors. An approximation of the boundary conditions for the auxiliary variables is required
and the successive HHD cannot remedy to the tangential assignment.
Hence, the meaning of a∗ deeply di�ers from that of the vector v∗ (a∗ is not the time

derivative of v∗): both are mathematical positions indicating an intermediate �eld, but the
�rst one posed as sum of the initial di�usive and advective di�erential terms of the momen-
tum equation, the latter as a provisional updated velocity. This way, it is shown that the HHD
of a∗, di�erently from that of v∗, extends to channel �ows and steady boundary conditions. It
is clari�ed that, for other kind of �ows, the decomposition is not necessarily orthogonal, the
uniqueness being no longer ensured (apart from particular cases, for example with the pres-
sure constant on the boundary). The theoretical conclusions are further validated by simple
numerical tests illustrated in a section. The results put in evidence the relevance of orthog-
onality into the decomposition and address how to perform the projection with second-order
time-accuracy with general boundary conditions.

2. HELMHOLTZ–HODGE ORTHOGONAL DECOMPOSITION THEOREM

In this section, some outlines of the Helmholtz–Hodge theorem on the orthogonal decompo-
sition for continuous operators are provided. A reader already familiar with this issue can
someway overstep to the next sections.
The work of Hodge leads to a generalized Laplace operator for functions and di�eren-

tial forms de�ned on Riemannian manifolds, and Kodaira aptly described Hodge’s theory
of harmonic integrals as generalized potential theory. The most essential result in Hodge
theory guarantees the existence and uniqueness of a solution to Laplace’s equation subject
to constraints given as integral equations on a compact Riemannian manifold. Thus, Hodge
theory gives a fundamental connection between partial di�erential operators and topology.§

§These integral equations may also be seen as determining a de Rham cohomology class and the existence and
uniqueness results imply that each cohomology class may be represented by a unique harmonic di�erential
form. Another of such connection comes from Stokes’ theorem which uses the exterior derivative to relate an
integral over a domain to an integral over its boundary.
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The Hodge decomposition theorem gives a splitting of any di�erential form into the sum
of three components, the properties of which are strongly tied to Laplace’s equation. The
Helmholtz theorem states that every smooth vector �eld decomposes as the sum of a gradient
vector �eld and one, which is divergence-free.
The statement is that:

Theorem
A given vector �eld w is uniquely decomposed, in a bounded domain � with smooth boundary
@�, in a pure gradient �eld and a divergence-free vector parallel to @�.

It also follows that the vector �eld w (w∈L2(�) having denoted by L2(�) the space of
vector functions whose square modulus is integrable in � and by H 1(�) the space of L2(�)
functions with �rst derivative in L2(�)) is uniquely determined when its divergence (say �)
and its curl (say r) are assigned along with the normal (or tangential) component on the
boundary.
Thus, the following equations must be satis�ed:

∇ ·w= �
∇∧w= r; x∈�

(1)

with either the boundary condition

n ·w=wn
or:

n∧w=wt ; x∈@�

n being the unit vector outward to @�, wn and wt the prescribed normal (scalar) component
and tangential vector component of w on @�, respectively.
As above addressed, w can be represented as the sum of w1=∇’; ’∈H 1(�) and w2=∇∧ b,

w2∈L2(�), being b a solenoidal vector; thus, according to (1) one has that the two compo-
nents of the HHD must satisfy:

w=w1 + w2 =∇’+∇∧ b (2)

∇ ·w1 = �
∇∧w2 = r; x∈�

n ·w2 = 0⇒w2 =w2t⇒ n · ∇’=wn
or:

n∧w1 = 0⇒w1t = 0⇒ n∧ (∇∧ b) :=w2t =wt ; x∈@�

Now, let us brie�y proof orthogonality, existence and uniqueness of the decomposition (2)1
for both cases of the normal (2)4 or the tangential (2)5 assignments.
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The orthogonality of the vectors, in the sense of the inner product, is veri�ed from

∫
�
w1 ·w2 dV =

∫
�
∇’ ·w2 dV

=
∫
�
∇ · (’w2) dV −

∫
�
’∇ ·w2 dV

=
∫
@�
’n ·w2 dS=0 from (2)4

∫
�
w1 ·w2 dV =

∫
�
∇’ · (∇∧ b) dV

=
∫
�
∇ · (b∧∇’) dV

=
∫
@�
n · (b∧∇’) dS

=
∫
@�
b · (∇’∧ n) dS=0 from (2)5 (3)

in case one prescribes normal or tangential condition, respectively.
Therefore, for both cases, there exists an orthogonal¶ projection operator denoted as follows:

⇒ PH onto H such that PH (w)=w2, where w2 de�ned in the divergence-free space H =
{v∈L2(�): ∇ · v=0, n · v=0 on @�} if the normal component (1)3 is assigned, or

⇒ PH ′ onto H ′ such that PH ′(w)=w2, being w2 de�ned in the divergence-free space H ′=
{v∈L2(�): ∇ · v=0; (n∧ v−wt)= 0 on @�}, the tangential vector component (1)4 being
assigned, respectively.

Actually, observe that to have orthogonality ensured, the condition n ·w2 = 0, as well as the
condition n∧w1 = 0, is su�cient but not necessary, being for the two cases only required either∫
@� ’n ·w2 dS=0 or

∫
@� b · (∇’∧ n) dS=0, respectively. For example, if ’ were constant onto

the boundary (i.e. t · ∇’=0 on @�), the orthogonality would result veri�ed with n ·w2 �=0.
Observe that the orthogonality would be veri�ed with suitable periodical boundary conditions,
too.
It is worthwhile distinguishing the concept of orthogonality used in the above context from

that one, which is given in R3 in the sense of standard inner product of two vectors de�ned
as xT · y=∑n

i=1 xiyi∈R. Based on this latter, two vectors are orthogonal in R3 in the sense
of perpendicularity embodied in the Pythagorean theorem that states they are orthogonal if
and only if ‖x‖2 + ‖y‖2 = ‖x − y‖2 implying xT · y=0. Such de�nition naturally extends to a
higher dimensions space Rn.

¶The divergence and the gradient are adjoint operators: ∫
� w2 · ∇’ dV =− ∫

� ’∇ ·w2 dV if n ·w2 = 0 on the
boundary.
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The existence of the decomposition, when the boundary condition (2)4 is prescribed, results
from the fact that the problem constituted by the Poisson Equation (2)2 associated to the
boundary condition (2)4

∇2’= �; x∈�
n · ∇’=wn; x∈@� (4)

admits a unique (apart from a constant) solution ’ because the required compatibility condition
(see Reference [30]):

∫
�
� dV =

∫
@�
wn dS⇒

∫
�
∇ ·∇’ dV =

∫
@�
n · ∇’ dS=

∫
@�
wn dS (5)

is veri�ed by the Neumann boundary condition (4)2, which implies that w2 must be parallel
to @� (but without prescribing its tangential vector component).

Remark 1
The mathematical problem constituted by the Poisson equation (4)1, associated to non-homo-
geneous Neumann boundary conditions (4)2, is equivalent to that one with prescribed ho-
mogeneous Neumann boundary conditions|| and a modi�ed source term �̃ obtained when the
divergence operator is de�ned onto the subspace of vectors with vanishing normal component
on the boundary @�.

Analogously, the solution of the problem constituted by the Poisson Equation (2)3 (being
∇∧ (∇∧ b)=−∇2b) associated to the boundary condition (2)5

∇2b=−r; x∈�
n∧ (∇∧ b) =wt ; x∈@� (6)

exists and is unique because the compatibility condition:
∫
S
n · r dS=

∫
@S
wt · dl (7)

being S the part of @� spanned by the contour @S and l the tangential unit vector to @S, is ver-
i�ed by the Dirichlet boundary condition (6)2 which implies that w1 (i.e. ∇’) must be parallel
to the unit vector outward to @� (its tangential components are null i.e. t1 · ∇’= t2 · ∇’=0).
As a consequence, only the tangential vector w2t is prescribed without forcing a vanishing (or
a prescribed value) normal component of w2.
The uniqueness of the HHD is proved by supposing that there exist two di�erent orthogonal

decompositions w=w1 +w2 =∇’+∇∧ b and w=w′
1 +w

′
2 =∇’′+∇∧ b′ both having on @�

either n ·w2 = n ·w′
2 = 0 or n∧w1 = n∧w′

1 = 0 in case of the problem (4) or (6), respectively.

||In fact, sometimes the solution of the pressure equation is referred to as that of a homogeneous Neumann problem.
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It results 0=∇(’−’′)+w2−w′
2 from which, by taking the inner product with w2−w′

2, one
has:

0 =
∫
�
[(w2 − w′

2) · (w2 − w′
2) + (w2 − w′

2) · ∇(’− ’′)] dV

=
∫
�
[(w2 − w′

2) · (w2 − w′
2)] dV −

∫
�
(w2 · ∇’′ + w′

2 · ∇’) dV

=
∫
�
‖w2 − w′

2‖2 dV −
∫
�
[∇ · (w2’′)− ’′∇ ·w2] dV −

∫
�
[∇ · (w′

2’)− ’∇ ·w′
2] dV

=
∫
�
‖w2 − w′

2‖2 dV −
∫
@�
n ·w2’′ dS −

∫
@�
n ·w′

2’ dS

=
∫
�
‖w2 − w′

2‖2 dV

or, by taking the inner product with w1 − w′
1, one gets

0 =
∫
�
[(w1 − w′

1) · (w1 − w′
1) + (w1 − w′

1) · (w2 − w′
2)] dV

=
∫
�
[(w1 − w′

1) · (w1 − w′
1)] dV −

∫
�
(w2 · ∇’′ + w′

2 · ∇’) dV

=
∫
�
‖w1 − w′

1‖2 dV −
∫
�
[∇ · (b∧∇’′) +∇ · (b′ ∧∇’)] dV

=
∫
�
‖w1 − w′

1‖2 dV −
∫
@�
n · (b∧∇’′) dS −

∫
@�
n · (b′ ∧∇’) dS

=
∫
�
‖w1 − w′

1‖2 dV −
∫
@�
b · (∇’′ ∧ n) dS −

∫
@�
b′ · (∇’∧ n) dS

=
∫
�
‖w1 − w′

1‖2 dV (8)

therefore, in the �rst case the integral vanishes if w2 =w′
2 (positivity of the integrand) and

consequently ∇’=∇’′ whilst in the second case if ∇’=∇’′ and thus w2 =w′
2.

Observe also that for the uniqueness of the orthogonal decomposition, the boundary condi-
tions n ·w2 = n ·w′

2 = 0 as well as n∧w1 = n∧w′
1 = 0 on @� are su�cient but not necessary.

For example, one could have n ·w2 �=0 and n ·w′
2 �=0 and still retain a unique decomposition

if ’ and ’′ were constants on @�.

3. THE APPLICATION OF THE HHD THEOREM FOR CONTINUOUS OPERATOR:
THE DETERMINATION OF THE EULERIAN ACCELERATION

In solving the system of di�erential equations for incompressible �ows, the velocity vector
and the pressure gradient �elds result coupled each other by the continuity constraint, because
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the pressure is only a Lagrange multiplier, not a thermodynamic state variable. Since this
coupling leads to computational procedures for solving continuity and momentum equations in
a Stokes-like system, splitting methodologies are often implemented. Owing to their simplicity
in de-coupling the problem and solving separately the parabolic=elliptic equations, projection
methods are extensively used. Hence, the application of the HHD theorem into a projection
method for solving the incompressible form of the Navier–Stokes equations is now discussed
and its implications analysed. In particular, the time-continuous formulation of the momentum
equation will be now considered. Let us remark that the mathematical problem will consist in
determining the unique orthogonal decomposition of an assigned or computed vector �eld w,
not in determining it by solving Equation (1).
Therefore, the vector �eld w will be associated to that part of the momentum equation,

which can be computed from the only initial velocity �eld. Speci�cally, the advective and
di�usive terms are known while the Eulerian acceleration and the pressure gradient repre-
sent the unknown terms of the decomposition. The goal of this section is to illustrate the
implications of the HHD theorem when one has:

• To determine the Eulerian acceleration a(x; t0) from the knowledge of initial and bound-
ary conditions prescribed in terms of the velocity vector �eld v(x; t0),

• Then, to solve the initial value problem @v=@t= a along with the initial condition
a(x; t0)= a0(x) and obtain the desired solution in terms of the divergence-free veloc-
ity �eld v(x; T ) along with the pressure gradient.

Typically, standard projection methods work in terms of the velocity �eld and start from
a di�erent point of view (e.g. see Reference [14] for a review) as the HHD is exploited
only after that a second-order time-accurate integration (with the AB=CN scheme) has been
performed in order for the vector �eld to be computed and thereafter decomposed. This
other procedure is addressed in the next section so that the di�erences between the boundary
condition can be highlighted for both procedures.
Hence, from the momentum equation, de�ne in �′=�×(t0; T ) the Eulerian acceleration

�eld a

a(x; t) :=
@v
@t
=−∇ · (vv) +∇ ·

(
1
Re

∇v
)
−∇p′

being a divergence-free owing to the continuity constraint ∇ · v=0, Re the Reynolds number
and having denoted by p′ the non-dimensional pressure.
Assume that the initial and boundary conditions are prescribed in terms of the velocity �eld

v while the initial pressure gradient is unknown. Furthermore, assume that the compatibility
conditions for the Navier–Stokes equations, i.e. the necessary and su�cient conditions on the
initial data on @� at t0 are ful�lled. Thus, regularity results of the strong solution v(x; t0) are
ensured in the bounded domain (for more details, see Temam [31]).
Now, consider the vector �eld to be decomposed, say a∗(x; t), provided by the convection

and di�usion of v, i.e.:

a∗ :=−∇ · (vv) +∇ ·
(
1
Re

∇v
)
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so, it results known from the prescribed initial data. Thus, the momentum equation is simply
recast as

a∗= a+∇p′ (9)

The attractive feature of Equation (9) stands in the fact that it appears in a form which
accords to the decomposition (2)1, wherein a∗ takes the role of w; a that of w2 and ∇p′ that
of w1. However, in order for Equation (9) to be the HHD of a∗, the vector �elds must satisfy
Equations (2), now rewritten as

∇ ·∇p′=∇ · a∗

∇∧ a=∇∧ a∗; x∈�
with

n · a∗= a∗n
or:

n∧ a∗= a∗t ; x∈@�

(10)

Again, Equation (10) highlight that, for the present purpose, the vector �eld a∗ at time t0,
its divergence and curl are assumed known, so that the problem can be stated as follows

Problem
For any vector �eld a∗(x; t0)= a∗0(x), determined from known initial data v(x; t0) in x∈� and
boundary conditions v@(x; t0) on x∈@� (i.e. satisfying both normal and tangential physical
values), determine its unique orthogonal decomposition.

Hence, one wonders if the two vector �elds (a;∇p′) express or not such a decomposition.
When the HHD is performed, one can solve the initial value problem @v=@t= a along with
the initial condition a(x; t0)= a0(x) and expresses the velocity �eld v(x; T ), for example
according to:

v(x; T )= v(x; t0) +
∫ T

t0
a dt= v(x; t0) + (T − t0)a0 + (T − t0)2

2
@a
@t

∣∣∣∣
t0

+ · · · ; x∈� (11)

Formally, the procedure is now closed, as the updated velocity �eld (11) that should satisfy
the continuity constraint, provides the non-solenoidal acceleration �eld a∗(x; T ), which is
suitable to be next decomposed as a∗(x; T )= a(x; T ) +∇p′(x; T ). However, as the HHD is
mathematically well posed when only one boundary condition is prescribed, one wonders what
properties will be ensured by the obtained boundary expression v@(x; T ) and consequently by
a@(x; T ). The accuracy of a projection method will depend on the way whereby the splitting
between acceleration and pressure gradient causes an error that has some component along
the velocity vector �eld. This fact suggests that the orthogonality of the decomposition is
important.
Let us now consider some di�erent types of boundary conditions dictated by the real phys-

ical problem to be solved.
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3.1. Case I: decomposition (9) with n · a=0 on @�
This case is accomplished, for example, by �ows totally con�ned by not permeable walls (e.g.:
lid-driven or natural convection in cavity), steady injection=suction along the walls as well
as by channel �ows with prescribed in�ow and out�ow steady conditions. The consequent
initial and boundary conditions, prescribed in terms of v, allow us obtaining the acceleration
a∗(x; t0)=−∇ · (v0v0) + 1=Re∇2v0 and decompose it.
By substituting w= a∗, w1 =∇p′ and w2 = a in the demonstrations (1)–(8), one directly

sees that the momentum equation (9) already expresses the unique decomposition of the
vector �eld a∗ in �. Therefore, it is possible to introduce the true orthogonal projection
operator∗∗ PH that is symmetric PH =(PH )T, bounded ||PH ||=1 and ||PH (a∗)||6||a∗||, idempo-
tent (PH )2 =PH (being PH [PH (a∗)]= a, for the uniqueness of the decomposition). It extracts
the divergence-free part of a∗ which is parallel to the boundary: by applying PH onto Equation
(9) and taking into account that PH (∇p′)= 0, PH (a)= a one gets PH (a∗)= a. In conclusion,
the boundary condition n · a=0 is su�cient to ensure that (9) expresses the orthogonal de-
composition of a∗ while also ensuring the existence and uniqueness of the pressure gradient
∇p′= a∗−a=(I−PH )(a∗). This pressure gradient is obtained by solving the Poisson equation
(10)1 at t0, ∇2p′=∇ · a∗(x; t0) along with the inhomogeneous Neumann boundary condition
@p′=@n= a∗n(x; t0) prescribed on x∈@�. Let us remind that Remark 1 explains how, alterna-
tively, this pressure problem can be associated to homogeneous Neumann boundary condition
@p′=@n=0 provided that the source term is modi�ed. Some further observations are con-
cerned about the decomposition onto the boundary. According to the standard inner product,
perpendicularity requires ‖a‖2 + ‖∇p′‖2 = ‖a −∇p′‖2 onto the boundary. Actually one gets
a · ∇p′|@� = (at1 (@p′=@t1) + at2 (@p

′=@t2)|@�, t1 and t2 representing the tangential directions of a
local reference system, therefore the two vectors result perpendicular only for some speci�c
�ow conditions.
Finally, the Eulerian acceleration is determined from (9) as a0 = a∗0 − ∇p′|t0 and ac-

cording to Equation (11), the time integration can be performed up to �rst-order terms
v(x; T )= v(x; t0) + �t a0. Higher order accurate integrations can be performed provided that
derivatives of a are expressed by means of (9) in a Lax–Wendro� integration type [15–18].
For example, up to O(�t2) terms, one can consider a second HHD @a=@t|t0 = @a∗=@t|t0 −
∇@p′=@t|t0 , provided that n · @a=@t|t0 = 0, wherein @a∗=@t|t0 =−∇ · (a0v0 + v0a0) + (1=Re)∇2a0
can be obtained from the previous vector �elds and the gradient of the pressure deriva-
tive is obtained by solving ∇2(@p′=@t)|t0 =∇ · (@a∗=@t)|t0 with proper boundary conditions.
As regards with the consequent boundary conditions, only the normal component is ex-
actly imposed. On the other side, it is well known that the ful�lment of the tangential
component remains fairly accurate [14, 23]. Although the �eld a∗0 is constructed from the
velocity �eld v0, having a correct tangential assignment all the way up to the boundary,
one has n∧ (a0 + ∇p′|t0)= a∗t;0 and the tangential component of a will not necessarily sat-
isfy the �ow condition in e�ect. What must be ensured is that the �eld remains smooth
close to the boundary and the tangential component is as accurate as the �eld into the
interior.

∗∗In the real space it can be shown that a=PH (a∗)=
∫
R3 K(x

′−x) · a∗(x′) dx′ being K(x)= I�(x)− 1
4�

( I
|x|3−3 xx

T

|x|5
)
.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:43–69



54 F. M. DENARO

3.2. Case II: decomposition (9) with n · a �=0 on @�
This case is accomplished, for example, by con�ned �ows with unsteady injection=suction or
with unsteady in�ow/out�ow (e.g. turbulent channel or backward facing-step �ows), periodical
�ows (homogeneous turbulent �ows, exact solutions) or other related problems. Again, initial
and boundary conditions allow us to obtain the acceleration a∗ and decompose it.
When assigning n · a= an �=0, that makes the demonstrations (1)–(8) no longer straightfor-

wardly applicable to (9). Nevertheless, in order for the decomposition (9) to be still orthog-
onal, it would be su�cient to subsist that condition

∫
@� n · ap′ dS=0 subsists (this happens

to be true, as we shall see, with suitable periodical boundary conditions as well as if p′ is
constant along @�), whereas the uniqueness of such decomposition would remain undeter-
mined (see Equation (8)). However, one can look for the unique orthogonal decomposition
of a∗ and reconsider the previous problem in terms of the three di�erential forms of Hodge
decomposition that mathematically expresses as

a∗= a′ +∇� (12)

being a′ a divergence-free vector �eld parallel to @�. As the momentum equation (9) still
applies, one gets also:

a= a′ +∇�−∇p′ ≡ a′ +∇f (13)

which is the desired relation between the Eulerian acceleration and the true orthogonal pro-
jection of a∗, i.e. PH (a∗)= a′, onto the subspace H of the divergence-free vectors parallel to
the boundary.
The existence and uniqueness of the vector �eld ∇f=∇�−∇p′ is ensured since, being a

divergence-free, one gets from Equation (13) the problem constituted by the Laplace equation
along with non-homogeneous Neumann boundary conditions

∇2f=0; x∈�
n · ∇f= an; x∈@�

(14)

which admits a unique solution f (apart from a constant) because the necessary compatibility
condition ∫

�
∇2f dV =

∫
@�
n · ∇f dS=

∫
@�
an dS=0 (15)

is satis�ed. Therefore, the resulting di�erence vector between a and a′, expressed by Equation
(13), is given by a gradient of a harmonic function. This result is consistent to the original
theory of Hodge.
Now, the counterpart of the decomposition addressed in Case I is performed by applying

the projector PH on Equation (12), namely PH (a∗)= a′ and obtaining the unique gradient �eld
∇�= a∗ − a′=(I − PH )(a∗). In practice, one solves at t0 �rst the problem constituted by the
Poisson equation along with the Neumann boundary condition:

∇2�=∇ · a∗0 ; x∈�
n · ∇�= n · a∗0 ; x∈@�

(16)
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and obtains the �eld a′0 = a
∗
0−∇�|t0 , then the harmonic function f is obtained by solving the

problem (14) so that, �nally, one gets the Eulerian acceleration according to a0 = a′0 +∇f|t0 .
This way, one proceeds by performing two successive decompositions along directions

dictated by the orthogonality criterion: �rst the HHD of a∗ allows us to obtain the �eld a′

by exploiting (12), then Equation (13) can be considered as a further HHD this time, being
the divergence-free vector a′ prescribed and the vector �eld a to be determined.
One wonders if this is the only way to get a as well as if an alternative way provides the

same result in terms of �nal accuracy. As a matter of fact, it can be shown that the Eulerian
acceleration can be directly determined in one step. To this aim, �rst, let us introduce the
de�nition of an oblique projector i.e. an operator denoted by

⇒ PX onto X such that PX (a∗)= a, being a de�ned in the divergence-free space X= {v∈
L2(�): ∇ · a=0; n · a= an on @�} if the normal component is assigned.

The fact that one has a divergence-free vector �eld, which is not parallel to the boundary,
introduces a new issue on uniqueness. The divergence and the gradient are not adjoint opera-
tors although PX is still idempotent. On the basis of the previous analyses, depending on the
type of boundary conditions, the vectors (a;∇p′) could still result orthogonal, in the sense
given by Equations (3), and PX could be still an orthogonal projector but they would not
necessarily represent the unique decomposition of a∗. This de�nition of oblique projection PX
highlights the fact that projection is neither in H nor in H ′, more in general, a and ∇p′ are
vectors belonging to non-orthogonal subspaces, i.e.

∫
@� n · ap′ dS �=0. In this sense, as also

observed in Reference [20], the HHD principle must be reconsidered in a more general sense,
as well as Equation (9) must be reconsidered as a decomposition along two general directions.
Therefore, for the given vector �eld a∗0(x), one proceeds in doing the decomposition (9) by

computing the gradient ∇p′=(I −PX )(a∗) by solving the problem constituted by the Poisson
equation with non-homogeneous Neumann boundary conditions:

∇2p′ =∇ · a∗; x∈�
n · ∇p′ = n · a∗ − an; x∈@�

(17)

existence and uniqueness (always apart from a constant) of p′, being ensured from the com-
patibility condition, ful�lled by the continuity constraint.
Let us observe that Remark 1 extends also to the solution of problem (17) stating its

equivalence with a Poisson problem, associated to homogeneous Neumann boundary condi-
tions, having a modi�ed source term, obtained when the divergence operator is de�ned onto
the subspace of vector function with normal component equal to an.

3.3. Case III: decomposition (9) with n∧∇p′=0 on @�

This case prescribes the boundary condition (10)4 thus, t · ∇p′|@� =0 (the case of �ows having
constant pressure along the boundary of the domain) and the pressure gradient has the only
component directed along the normal to the boundary.
Again, by considering Equations (1)–(8) with w= a∗, w1 =∇p′ and w2 = a=(∇∧ b), one

sees that n∧∇p′= 0 is the su�cient condition to have (9) directly expressing the unique
HHD of a∗ in �. Hence, it is possible to introduce the orthogonal projection operator PH ′

such that it extracts the divergence-free part of a∗, its tangential vector component (10)4 being
assigned on the boundary.
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Initial and boundary conditions allow to determine the vectors a∗0(x) and r0(x)=∇∧ a∗0(x)
and, in order for a∗0(x) to be projected onto the subspace H

′, one proceeds by applying PH ′

on a∗0(x), taking into account that PH ′(∇p′)= 0, PH ′(a)= a, and solving PH ′(a∗)= a. The
potential divergence-free vector b is computed by solving the problem constituted by the
Poisson equation along with Dirichlet boundary conditions:

∇2b=−r0; x∈�
n∧ (∇∧ b) = n∧ a∗0 ; x∈@�

(18)

the compatibility condition ensuring the existence and uniqueness of b. This �eld allows
us to determine the Eulerian acceleration a0(x)= (∇∧ b)|t0 and then the velocity from
Equation (11).
Equivalently, as the curl of a∗0(x) coincides with the local time derivative of the vorticity

� at t0:

@�
@t

∣∣∣∣
t0

:= r0(x) (19)

one gets (e.g. see References [32, 33]) the well-known potential vector-vorticity formula-
tion that is based on the solution of the initial value problem @�=@t= r with initial data
�0(x)=∇∧ v0(x) and proper boundary conditions:

�(x; T )= �(x; t0) +
∫ T

t0
∇∧ a∗ dt= �(x; t0) + (T − t0)r0 + (T − t0)2

2
@r
@t

∣∣∣∣
t0

+ · · · ; x∈� (20)

from which one restates the problem (18) integrated in time. Now, the vector n∧ v(x; T ) can
be determined on the boundary, because of the (18)2, but the normal component value does
not result explicitly ful�lled from the HHD. In Reference [32] it is reported a strategy to
face this issue in case of 2D multi-connected domains. In the framework of such formulation,
spurious vorticity, or vorticity errors, were removed on the basis of the HHD theorem [34].
By taking the curl of (18), analogous considerations lead to the velocity-vorticity formulation.
The case n∧∇p′ �= 0 on @�, is not analysed because, analogously to the Case II, one can

determine a second potential vector in order to report us to the Case III and determine the
two unique orthogonal components of the HHD.

4. THE APPLICATION OF THE HHD THEOREM FOR TIME-DISCRETIZED
OPERATORS: THE SECOND-ORDER TIME ACCURATE

PRESSURE-FREE PROJECTION METHOD

In many studies, the implementation of projection methods is performed in a quite di�erent
way from that one illustrated in the previous section. More speci�cally, the HHD applies for
determining a divergence-free velocity �eld after that an intermediate non-solenoidal velocity,
say v∗, is computed. Among the others, one of the most common projection methods is the
second-order FTSM by Kim and Moin [10] (so-called pressure-free projection (PFP) method,
e.g. see Reference [14]). The intermediate velocity satis�es a semi-implicit discrete equation,
which is obtained by applying the second-order AB=CN time integration onto the momentum
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equation (9) while disregarding the pressure terms. Next, the velocity v∗ is decomposed in
order for the velocity v(T ) to be the divergence-free. As such a projection method is still
based on the application of the HHD theorem and is usually adopted for simulating �ows
with prescribed normal component n · v@ �=0, the discussions addressed in Cases I and II have
to be considered as guidelines for applying the decomposition criterion.
In order for the orthogonal projector PH to be de�ned some di�erences appear whereas

the vector to be decomposed is the provisional velocity �eld v∗ instead of being a∗. In fact,
one has that n · v@=0 could be not in e�ect for the studied �ow problem, whereas n · a@=0
is a �ow condition which could be more generally accomplished. Such a case is encoun-
tered for example in the steady backward facing-step �ows. Nevertheless, as discussed in
Section 3.1–2, for performing an orthogonal decomposition (not unique) it could not be nec-
essarily a null velocity normal component.
Hitherto, one remarks:

• In the PFP method, the provisional vector �eld v∗, has no meaning of a time-continuous
function but it is just a mathematical position into the time-discretized prediction equa-
tion. This means that the �eld a∗, previously introduced, must not be considered repre-
sentative of the time derivative of v∗. This aspect is fundamental in deriving consistent
boundary conditions for the closure of the fractional-based equations [35, 36].

• Several modal analyses have demonstrated that when the AB=CN-based prediction equa-
tion is associated to the intermediate boundary conditions proposed in [10] a numerical
boundary layer is generated [14, 20, 23–27]. Nevertheless, although created by inconsis-
tent boundary conditions, when such boundary layer mode is orthogonal to the space
of divergence-free vector �elds, the projected velocity �eld does not contain such errors
and full second-order accuracy is retained all the way up to the boundary. Thus, the
actual accuracy of the PFP method when based on the oblique projector PX , deserves a
careful consideration.

• The time integration is performed within a prediction step, namely before of performing
the decomposition. In doing so, the meaning of the gradient �eld, which appears into
the decomposition, is altered. In fact, such a �eld is an auxiliary variable and it will be
only an approximation of the real pressure gradient.

Now the PFP method for prescribed non-homogeneous Dirichlet conditions is brie�y ad-
dressed. For prescribed divergence-free vector �elds, let us say v(x; t n)= vn and v(x; t n−1)=
vn−1, t n−1 = t n −�t, one integrates Equation (9) in the time interval [t n; t n+1 = t n +�t], ac-
cording to the CN scheme for the di�usive term and the AB scheme for the advective ones.
After having disregarded the integral pressure term, the provisional �eld v∗ is de�ned to be
solution of the following time-discretized equation (the space discretization is not relevant in
this framework), associated to some intermediate boundary conditions:

(
I − �t

2Re
∇2

)
v∗ =

(
I +

�t
2Re

∇2
)
vn − �t

2
∇ · (3vnvn − vn−1vn−1); x∈�

v∗(x) = v∗@ ; x∈@�
(21)

Then, the vector �eld v∗, is decomposed according to

v∗= vn+1 +∇�n+1 (22)
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by solving the Poisson problem††

∇2�n+1 =∇ · v∗; x∈�
n · ∇�n+1 = n · (v∗ − vn+1); x∈@�

(23)

thus obtaining the vector �eld vn+1 =PX (v∗) (or, vn+1 =PH (v∗) when possible). This �nal
divergence-free vector is expected to satisfy, at least up to second-order terms in time, the
original coupled momentum and continuity equations system, as well as the boundary condi-
tions.
As far as the relation between ∇�n+1 and ∇p′ is concerned, it is determined by combining

(21)1 as (I − �t
2Re∇2)vn+1 = (I − �t

2Re∇2)v∗ − ∫ t n+1
t n ∇p′ dt and (22) so that it results

�t∇〈p′〉n+1≡
∫ t n+1

t n
∇p′ dt=

(
I − �t

2Re
∇2

)
∇�n+1 (24)

Equation (24) highlights the fact that the gradient �eld ∇�n+1 always represents only a
�rst-order approximation of the authentic pressure gradient which appears into the coupled
momentum equation (9). It is interesting to exploit Equation (9) for expressing the (24)
in terms of the orthogonal projector (as long as it is de�nable) as ∇p′=(I − PH )(a∗) and
∇�n+1 = (I − PH )(v∗):

(I − PH )
∫ t n+1

t n
a∗ dt =

(
I − �t

2Re
∇2

)
[(I − PH )(v∗)]

= (I − PH )
[(
I − �t

2Re
∇2

)
v∗
]
+
�t
2Re

[∇2PH (v∗)− PH (∇2v∗)] (25)

In general, if the domain is con�ned, commutation between Laplacian and gradients op-
erators does not apply on the boundary, PH (∇2v∗) �=∇2PH (v∗)=∇2vn+1 since the vector
PH (∇2v∗) is divergence-free and has a null normal component to the boundary whereas the
vector ∇2vn+1 is divergence-free but not necessarily parallel to the boundary. By formally
rewriting (25) as

∫ t n+1

t n
a∗ dt≡�t〈a∗〉n+1 =

(
I − �t

2Re
∇2

)
v∗ +

�t
2Re

(I − PH )−1[∇2vn+1 − PH (∇2v∗)] (26)

one highlights the interesting aspect that the pressure gradient does not appear and whatever
expression one adopts for the intermediate boundary condition (21)2, it should satisfy Equation
(26) on @�.

††Observe that only if were possible to express a∗= @v∗
@t then Equation (23) would result the counterpart of problem

(17) when this latter is integrated in time, being ∇�n+1 = ∫ t n+1
t n ∇p′ dt.
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Consider that in the PFP method v∗ and �n+1 are only auxiliary variables, therefore the
original coupled Navier–Stokes system does not specify how to prescribe their boundary
values. However, as Remark 1 extends to problem (23), whatever boundary values for v∗

has been prescribed in solving the prediction step (21), it is su�cient in solving (23) that its
normal component equals the di�erence between the normal components of the gradient �eld
and the exact velocity. In other words, in (23)2 it su�ces to know the correct velocity n · vn+1
whereas no one of the others needs to be singularly prescribed. Therefore, while ensuring
continuity, the (23)2 set the solution to exactly satisfy the correct normal �ow condition.
On the other side, according to the potential character of the auxiliary variable �n+1, nothing

can be ensured by solving (23) as far as the tangential component is concerned. The uncer-
tainty arises from the rotational part of the solution, namely from the intermediate velocity
obtained from (21). In fact, by projecting (22) along the tangential direction to the boundary,
one gets t · vn+1@ = t · (v∗@ −∇�|n+1@ ) wherein t · v∗@ is the boundary value already prescribed in
solving problem (21). Actually, the PFP procedure requires that, before �n+1 is available, some
functional relation in (21)2, generally of the type v∗@ = v

n+1
@ + f(�)|@, has been already pre-

scribed. As a consequence, in order for the tangential component to be satis�ed (at least at the
same accuracy resulting in the interior) one should ensure that t · (f(�)|@−∇�|n+1@ )=O(�t3)
veri�es at the end of the steps. Let us remark that the homogeneous condition f(�)|@= 0 has
been often used in many papers.
From the previous considerations, it should be clear that v∗ has to be considered only

as a mathematical position. As a matter of fact, by hypothesizing that a continuous-in-time
�eld v∗(t) exists, Kim and Moin [10] following the procedure of Oliger and LeVeque, see
Reference [35], proposed to specify, by means of a Taylor series expansion about t n, a non-
homogeneous intermediate boundary conditions (21)2, i.e. f(�)|@=∇�|n@ . Observe that, by
doing so it was implicitly assumed to distinguish two time levels for the provisional �eld,
i.e. v∗n+1 and v∗n. Such type of boundary has been widely used as it is supposed to produce
results that are more accurate.
However, when the intermediate boundary conditions are those proposed by Kim and Moin,

one comes into two possible kinds of errors:

1. A numerical boundary layer owing to the fact that @�=@n|@=const(t) is implicitly con-
sequential.

2. A slip condition error as it results t · (∇�|n@ −∇�|n+1@ )=O(�t).

Several analyses of such errors were performed and reported in References [19–28]. For
example, E and Liu [20] reported in 1995: it has been a mystery for twenty-�ve years that
the projection method seems to perform better than expected. They stated that the e�ect
of solid boundaries does not result restricted to create numerical boundary layers but they
introduce high-frequency oscillations reducing the order of the accuracy in the interior of
the domain. Speci�cally, Dirichlet boundary conditions for pressure were shown to lead to
O(1) numerical boundary layers. They performed the analysis by prescribing @p=@n|n+1@ =0
while considering n · v∗@ =0 in the prediction step. However, in this way, the di�erences from
the real pressure gradient and the auxiliary gradient �eld de�ned into (22) are not high-
lighted but it was stated that the gradient �eld solution of (23) directly approximates the
authentic pressure gradient, which therefore has a numerical boundary layer. More recently,
Strikwerda and Lee [23] stated from their analysis that the numerical boundary layer really is
in the auxiliary variable �, not in the pressure. Ultimately, Brown et al. [14] showed that a
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�rst-order convergence in the pressure is numerically obtained, despite of the results provided
by the normal mode analysis that predicts, whatever prescribed value n · v∗@ as long as respect-
ing (23), second-order convergence. They adduced this lack in the convergence rate to the
fact that the �eld v∗ is not smooth close to the boundary so resulting also for the variable �
and in order for this error to be remedied, they proposed to adopt inhomogeneous Neumann
boundary conditions. However, owing to the peculiar construction of the PFP method, it can
be shown that the knowledge of the authentic pressure gradient �eld is never required to retain
the second-order accuracy in the velocity, at least in case of prescribed periodical condition.
It is generally accepted that, if one adopts the pressure-free projection method, the limited
accuracy of the gradient does not limit the accuracy in the velocity vector vn+1 because at
any time step the pressure error is disregarded [14] by prohibiting that it could accumulate
in time and contribute in the momentum equation solution. For di�erent prescription of the
boundary conditions (e.g. con�ned �ows), in order to retain fully second-order accuracy all
the way up to the boundary, one must proceed in such a way that the produced numerical
boundary layer does not a�ect the velocity (or equivalently to require orthogonality of the
decomposition) while obtaining su�ciently smooth slip condition. Hence, it is suggested that
if the boundary layer mode is an exact gradient it does not contribute to the divergence-free
velocity �eld. Again, as reported by E and Liu [20], ‘the question to be addressed is whether
orthogonality is really important’ in this context. Thus, a crucial issue consists in analysing
if orthogonality and uniqueness of the decomposition are really necessary for remedying to
the errors.
Moreover, to the best of the author’s knowledge, a speci�c discontinuity feature of the

auxiliary variable ∇� does not seem to have been su�ciently highlighted in the literature.
In fact, the superscript notation n in f(�)|@=∇�|n@ is someway misleading as the gradient of
the �eld �, as well as the intermediate �eld v∗, is not a continuous function in time. As a
matter of fact, in the considered time interval (t n; t n+1) in which one wants to determine v∗,
because the intermediate �eld was set as v∗n= vn (namely its previous value is disregarded
and it is reset to the initial divergence-free velocity) according to decomposition (22) it should
congruently result ∇�n= 0. Therefore, in the integration interval (t n, t n+1), one must be aware
that notation ∇�n does not stand for the value of the gradient �eld at the time t n but it is that
one computed in the previous time-integration step in the interval (t n−1; t n) thus, to be more
properly indicated as ∇�n− . As a conclusion, one can deduce that di�erent limiting values
∇�n− �=∇�n+ = 0 exist. A major extension of this boundary condition is plausible provided
that this issue is considered.
Now, de�ning the splitting error vector �elds according to the expressions en+1v = ṽn+1 −

vn+1 = e�t
@
@t |

n

ṽ(t) − (v∗ − ∇�n+1) and en+1p =(∇p̃′n+1 − ∇�n+1) where ṽn+1, ∇p̃′n+1 are the
exact �elds and e�t@=@t|

n
is the solution operator and projecting en+1p along the velocity it is

easy to verify that if and only if en+1p ∼ ∇� then ∫
� e

n+1
p · vn+1 dV = ∫

@� n · vn+1� dS and such
integral vanishes within the same constraint of orthogonality. In the PFP, according to (24)
if the domain is con�ned, commutation between Laplacian and gradients operators in general
does not apply on the boundary allowing the pressure error to enter into the velocity accuracy.
If this is the case, one should ensure that the error has not a magnitude order greater than in
the interior.
The next section is devoted to make clearer such issues by performing a numerical validation

and highlighting the consequences of the lack into orthogonality of the decomposition.
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5. NUMERICAL VALIDATION

For the sake of clarity, these aspects are highlighted in the following example of the 2-D
Taylor solution of the Navier–Stokes system:

u(x; y; t) =− cos x sin y e−2t

v(x; y; t) = sin x cosy e−2t

p(x; y; t) =−0:25(cos 2x + cos 2y) e−4t
(27)

Despite the fact that this simple solution embodies a separate equilibrium between acceler-
ation and di�usion, convection and pressure gradient, the attractive feature of such a solution
consists in the possibility to prescribe Dirichlet or Neumann boundary conditions along �cti-
tious �nite domains, which can be chosen in such a way to test orthogonality. According to
such idea, two domains will be �xed, the one verifying orthogonality, the other not.
Let us �rst assume the bounded domain �1 = [−�×�]×[−�×�] for which n · a= an �=0

results from (27)1;2 evaluated on the frontier @�1. Nevertheless, it is easy to verify that∫
�1
a · ∇p′ dV =0 and therefore Equation (9) will express an orthogonal decomposition of a∗.

However, such decomposition is not unique, existing two distinct solutions of problems (16)
and (17) even if the source terms are the same. In fact, from Equation (27)3 it results that the
Neumann boundary conditions for (17) turns to be homogeneous di�erently from the boundary
condition for (16). Observe that the decomposition (9) would return to be both orthogonal and
unique if the bounded domain were extended, for example, to [−�=2×�=2]×[−�=2×�=2] since
for it n · a=0 on the frontier. The second chosen bounded domain is �2 = [0×�]×[0×1], for
which results

∫
�2
a · ∇p′ dV �=0. The situation is sketched into the vector plots, reported in

Figures 1, obtained at time t=0 from Equation (27), for (1a) the Eulerian acceleration a, (1b)
the pressure gradient �eld ∇p′, respectively. Owing to the tangential direction of the pressure
gradient along the frontier @�1, perpendicularity between the vectors �eld, i.e. a · ∇p′=0,
also subsists. On the other hand, along the frontier @�2, perpendicularity between the vectors
�eld does no longer subsist at boundary y=1.
The numerical results reported in this section concerns the application of the HHD for

determining:

(a) The Eulerian acceleration (9) at t0 for integrating in time according to (11) and ob-
taining the divergence-free velocity �eld and pressure gradient at T .

(b) The divergence-free velocity �eld (22) and pressure gradient at T after that an inter-
mediate non-solenoidal velocity, based on the PFP procedure (21), is computed.

A second-order co-located �nite di�erence (FD) approximation was adopted and the splitting
errors (ṽn+1 − vn+1) and (∇p̃′n+1 −∇p′n+1) are computed in the L∞ norm over the domains,
including the boundaries, after a single time step. Applying a standard SOR procedure, the
algebraic linear systems are solved. The number of grid points is (315×315) for �1 and
(158×51) for �2, respectively thus, the same uniform mesh size h=O(10−2) acts for all tests.
In one time step, the splitting error (or equivalently, discretization error) for the velocity i.e.
the di�erence between the exact (27)1;2 and the numerical solution, relates to the LTE by the
time step (for more details see Reference [36]) and this concept is now exploited to analyse
the splitting. Hence, the splitting errors accords with es=�t O(LTE) standing LTE for the
Local Truncation Error which is O(�tp; h2), whose magnitude order p will de�ne the actual
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Figure 1. (a) Vector plot of the Eulerian acceleration a expressed from Equation (27)1; 2 at t=0
and represented in the �nite domain �1 = [−�; �] × [−�; �] wherein the decomposition is orthogonal.
The dotted box [0; �] × [0; 1] represents the �nite domain �2 in which the decomposition is not or-
thogonal. (b) Vector plot of the pressure gradient �eld expressed from Equation (27)3 at t=0 and
represented in �1 = [−�; �] × [−�; �]. For a better visualisation, the vector length has also been in-
creased twice than that in (a). Note that the boundaries plot has been removed from the �gure for
highlighting the tangential direction of the pressure gradient along the frontier @�1 whereas perpen-
dicularity between the vectors �eld, i.e. a · ∇p′=0, subsists. On the other hand, along the frontier

@�2 perpendicularity between the vectors �eld does not subsist at y=1.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:43–69



HELMHOLTZ–HODGE DECOMPOSITION IN PROJECTION METHODS 63

accuracy of the projection method. Thus, the accuracy order of the method is de�ned by the
rate at which the LTE goes to zero for vanishing integration parameters. Thus, after that the
splitting errors is computed, by simply dividing it for the time step, the value p associated
to the projection method can be deduced in a straightforward way. Let us begin to illustrate
the results obtained for the domain �1. The plots of the error curves are shown in Figures 2
and 3 for the cases addressed in (a) and (b), respectively.
For what regards with case (a), the convergence rates for the u and v velocity components

are reported in Figure 2(a) while those for @p=@x and @p=@y components are reported in
Figure 2(b). The initial third-order slope of the velocities convergence con�rms the second-
order accuracy (i.e. p=2) of the solution all the way up to the boundary. Let us remind
that the computations are performed with a variable Courant number |v|�t=h and the reported
errors for the velocity, Figure 2(a), relates to the LTE according to (�tp+1, �t h2). Therefore,
it appears that, for vanishing time steps and �xed h, the slope changes according to a �rst-
order asymptotic convergence when the time step becomes comparable to the mesh size. The
same features appear in Figure 2(b) but, owing to the gradient space-discretization, the rate
of convergence tends to the constant second-order h2 value.
For what regards with case (b), the convergence rates for the u and v velocity components

are reported in Figure 3(a) while those for @�=@x and @�=@y components are reported in 3(b).
However, now the resulting initial second-order slope of the velocity convergence indicates
the �rst-order accuracy (i.e. p=1) of the solution all the way up to the boundary. This
decreasing into the accuracy is caused by the error in the tangential component introduced by
the intermediate auxiliary boundary condition f(�)|@=∇�|n@ that cannot be corrected by the
projection step (23). In fact, it was veri�ed that the maximum error remains always localized
on the boundaries. It is worthwhile remarking that by performing the same computation but for
bi-periodical boundary conditions, the third-order slope was restored. As before, the reported
errors for the velocities, Figure 3(a), relates to the LTE therefore, for vanishing time steps,
the slope must change. According to (24), the convergence for @�=@x and @�=@y components
is also reduced. Owing to the gradient discretization, the rate of convergence tends to the
constant second-order h2 value.
Let us now illustrate the results obtained for the non-orthogonal decomposition into the

�nite domain �2. The plots of the error curves are shown in Figures 4 and 5 for the cases
addressed in (a) and (b), respectively.
For what regards with case (a), the convergence rates for the u and v velocity components

are reported in Figure 4(a) while those for @p=@x and @p=@y components are reported in 4(b).
Now, although the third-order slope of the velocities convergence in Figure 4(a) con�rms the
second-order accuracy (i.e. p=2) of the solution, the pressure gradient convergence rates in
Figure 4(b) shows a drastic reduction. This speci�c e�ect is fundamental in understanding
the modal interaction between velocity and pressure. In a single time step the illustrated
e�ects remains clearly separated but when one reiterates the time integration starting from the
obtained solution at T , then the pressure errors tend to enter into the velocity accuracy.
For what regards with case (b), the convergence rates for the u and v velocity components

are reported in Figure 5(a) while those for @�=@x and @�=@y components are reported in
5(b). However, now in Figure 5(a) the initial second-order slope tends to become �rst order
for �t¡0:1 but this time, the error level for which this happens is not the O(h2) of the
LTE. What is more, consists into the evident lack of convergence in Figure 5(b) concerning
the auxiliary pressure gradient. It is worthwhile remarking that to these di�erences in results
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Figure 2. (a) Determination of the Eulerian acceleration a0 by means of the orthogonal decom-
position (9) in the domain �1 = [−�; �] × [−�; �] and second-order time integration (11) for
determining vn+1. Convergence rate for the u and v velocity components. The errors, computed
in the L∞ norm are shown against the time step in a double logarithmic scale. The third-order
slope con�rms the second-order accuracy of the solution all the way up to the boundary. (b)
Determination of the Eulerian acceleration a0 by means of the orthogonal decomposition (9) in
the domain �1 = [−�; �] × [−�; �] and second-order time integration (11) for determining vn+1.
Convergence rate for the @p=@x and @p=@y components. The errors, computed in the L∞ norm are
shown against the time step in a double logarithmic scale. Owing to the gradient discretization

the rate of convergence tends to the constant second-order h2 value.

reported in Figures 4(a) and 5(a), contribute the fact the in the latter case the time integration
(21) is implicit, therefore also in one time step the computation of v∗ already su�ers by the
pressure errors whereas the explicit time integration in the former retards such e�ect which
would be evident during the successive time integration.
It is consequent to ascribe the main responsibility of the accuracy decreasing in the lack

of the orthogonality of decomposition (9) and (22). The fundamental conclusion is that
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Figure 3. (a) Determination of the velocity vn+1 by means of the orthogonal decomposition
(22) in the domain �1 = [−�; �]× [−�; �] and after second-order time integration (21) with the
Kim-Moin boundary conditions for determining v∗. Convergence rate for the u and v velocity
components. The errors, computed in the L∞ norm are shown against the time step in a double
logarithmic scale. The second order slope assess the �rst order accuracy of the solution all the
way up to the boundary. This decreasing into the accuracy is caused by the error in the tangential
component introduced by the intermediate boundary condition. (b) Determination of the velocity
vn+1 by means of the orthogonal decomposition (22) in the domain �1 = [−�; �] × [−�; �] and
after second-order time integration (21) with the Kim-Moin boundary conditions for determining
v∗. Convergence rate for the @�=@x and @�=@y components. The errors, computed in the L∞ norm
are shown against the time step in a double logarithmic scale. Owing to the gradient discretization

the rate of convergence tends to the constant second-order h2 value.

orthogonality of the decomposition should be always maintained for all the �ow problems
of practical interest thus, Case II should be considered as guideline for performing an accu-
rate projection.
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Figure 4. (a) Determination of the Eulerian acceleration a0 by means of the non-orthogonal
decomposition (9) in the domain �2 = [0; �]× [0; 1] and second-order time integration (11)
for determining vn+1. Convergence rate for the u and v velocity components. The errors,
computed in the L∞ norm are shown against the time step in a double logarithmic scale. The
third-order slope con�rms the second-order accuracy of the solution all the way up to the
boundary. (b) Determination of the Eulerian acceleration a0 by means of the non-orthogonal
decomposition (9) in the domain �2 = [0; �]× [0; 1] and second order time integration (11)
for determining vn+1. Convergence rate for the @p=@x and @p=@y components. The errors,
computed in the L∞ norm are shown against the time step in a double logarithmic scale.

Comparing with Figure 2(b), it clearly appears the reduced slope.

6. CONCLUSIONS

The role of the Helmholtz–Hodge decomposition theorem in being a part of projection methods
adopted for solving the Navier–Stokes system for incompressible �ows with prescribed general
boundary conditions is illustrated. As, in a bounded domain, it is required that the divergence-
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Figure 5. (a) Determination of the velocity vn+1 by means of the non-orthogonal decomposi-
tion (22) in the domain �2 = [0; �]× [0; 1] and after second-order time integration (21) with the
Kim-Moin boundary conditions for determining v∗. Convergence rate for the u and v velocity
components. The errors, computed in the L∞ norm are shown against the time step in a double
logarithmic scale. The initial second order slope tends to become �rst order for �t¡0:1. Compar-
ing with Figure 3(a), it clearly appears the reduced slope. (b) Determination of the velocity vn+1
by means of the non-orthogonal decomposition (22) in the domain �2 = [0; �] × [0; 1] and after
second-order time integration (21) with the Kim-Moin boundary conditions for determining v∗.
Convergence rate for the @�=@x and @�=@y components. The errors, computed in the L∞ norm
are shown against the time step in a double logarithmic scale. The initial �rst-order slope tends

to become constant for �t¡0:1.

free vector �eld belongs to a subspace of vector �elds parallel to the frontier, it was shown that
the decomposition can be applied in a more general way in the determination of the Eulerian
acceleration rather than of the velocity. On the other hand, the consequences of adopting
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projection methods with general boundary conditions were also addressed in terms of the lack
into the orthogonality and uniqueness of the decomposition. An approach for determining the
Eulerian acceleration vector �eld with a non-vanishing normal component via two-successive
orthogonal decompositions is addressed. An answer to the question if orthogonality is really
important is consequently provided. The conclusions are then extended to the pressure-free
projection method.
Moreover, in principle, since the Helmholtz–Hodge decomposition in a bounded domain

requires only one condition to be well posed, it is not possible to satisfy all the bound-
ary conditions for the projected vector �eld. It was clari�ed that, if on a side the original
Stokes-like system allows to correctly impose all the boundary conditions, the pressure-free
(de-coupled) system is based on two steps: in the �rst an auxiliary non-solenoidal vector �eld
is determined from an implicit parabolic-type equation associated to normal and tangential
components for it to be prescribed before resolving the projection step. In the second step,
the projection requires only one condition in terms of the physical normal component of
the velocity that corrects that previously assigned in the �rst step. Therefore, globally, the
de-coupled system requires the same number of boundary conditions of the original system
but apart from that assigned during the projection, the exactness of the others is not ensured.
As a conclusion, this study is part of a more general analysis concerning the development

of high-order accuracy projection-based methods for developing Large Eddy Simulation for
turbulence [37]. It is therefore necessary to re-interpret the boundary conditions (21)2 when
the intermediate vector velocity is a �ltered quantity and (21)1 contains an SGS model. This
fact forces the form of boundary conditions for the tangential components to be derived from
an equivalent �ltered counterpart. Therefore, future work will be addressed in the future.
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